Эврика!

Регистрация

Как найти длину отрезка по координатам

Существуют три основных системы координат, используемых в геометрии, теоретической механике, других разделах физики: декартова, полярная и сферическая. В этих системах координат каждая точка имеет три координаты. Зная координаты двух точек, можно определить расстояние между этими двумя точками.Как найти длину отрезка по координатамВам понадобится

Рассмотрите для начала прямоугольную декартову систему координат. Положение точки в пространстве в этой системе координат определяется координатами x,y и z. Из начала координат к точке проводится радиус-вектор. Проекции этого радиус-вектора на координатные оси и будут координатами этой точки.
Пусть у вас теперь есть две точки с координатами x1,y1,z1 и x2,y2 и z2 соответственно. Обозначьте за r1 и r2, соответственно, радиус-векторы первой и второй точки. Очевидно, что расстояние между этими двумя точками будет равно модулю вектора r = r1-r2, где (r1-r2) - векторная разность.
Координаты вектора r, очевидно, будут следующими: x1-x2, y1-y2, z1-z2. Тогда модуль вектора r или расстояние между двумя точками будет равно: r = sqrt(((x1-x2)^2)+((y1-y2)^2)+((z1-z2)^2)).

Рассмотрите теперь полярную систему координат, в которой координата точки будет задаваться радиальной координатой r (радиус-вектор в плоскости XY), угловой координатой ? (углом между вектором r и осью X) и координатой z, аналогичной координате z в декартовой системе.Полярные координаты точки можно перевести в декартовы следующим образом: x = r*cos?, y = r*sin?, z = z. Тогда расстояние между двумя точками с координатами r1, ?1 ,z1 и r2, ?2, z2 будет равно R = sqrt(((r1*cos?1-r2*cos?2)^2)+((r1*sin?1-r2*sin?2)^2)+((z1-z2)^2)) = sqrt((r1^2)+(r2^2)-2r1*r2(cos?1*cos?2+sin?1*sin?2)+((z1-z2)^2))

Теперь рассмотрите сферическую систему координат. В ней положение точки задается тремя координатами r, ? и ?. r - расстояние от начала координат до точки, ? и ? - азимутальные и зенитный угол соответственно. Угол ? аналогичен углу с таким же обозначением в полярной системе координат, а ? - угол между радиус-вектором r и осью Z, причем 0<= ? <= pi.Переведем сферические координаты в декартовы: x = r*sin?*cos?, y = r*sin?*sin?*sin?, z = r*cos?. Расстояние между точками с координатами r1, ?1, ?1 и r2, ?2 и ?2 будет равно R = sqrt(((r1*sin?1*cos?1-r2*sin?2*cos?2)^2)+((r1*sin?1*sin?1-r2*sin?2*sin?2)^2)+((r1*cos?1-r2*cos?2)^2)) = (((r1*sin?1)^2)+((r2*sin?2)^2)-2r1*r2*sin?1*sin?2*(cos?1*cos?2+sin?1*sin?2)+((r1*cos?1-r2*cos?2)^2))

© CompleteRepair.Ru