Эврика!

Как найти модуль разности корней

Содержание

  1. Инструкция

Как найти модуль разности корней

Из курса школьной математики многие помнят, что корень – это решение уравнения, то есть те значения Х, при которых достигается равенство его частей. Как правило, задача нахождения модуля разности корней ставится в отношении квадратных уравнений, ведь именно они могут иметь два корня, разность которых вы сможете вычислить.

Инструкция

  • Для начала решите уравнение, то есть найдите его корни или докажите, что они отсутствуют. Перед вами уравнение второй степени: посмотрите, имеет ли оно вид AX2 + BX + C = 0, где А, В и С – простые числа и А не равно 0.
  • Если уравнение не равно нулю или во второй части равенства присутствует неизвестная Х, приведите его к стандартному виду. Для этого перенесите все числа в левую часть, заменив стоящий перед ними знак. Например, 2Х^2 + 3X + 2 = (-2X). Привести это уравнение можно следующим образом: 2Х^2 + (3Х + 2Х) + 2 = 0. Теперь, когда ваше уравнение приведено к стандартному виду, можно приступить к нахождению его корней.
  • Вычислите дискриминант уравнения D. Он равен разности B, возведенного в квадрат, и А, умноженного на С, и на 4. Приведенное в пример уравнение 2Х^2 + 5Х + 2 = 0 имеет два корня, так как его дискриминант равен 5^2 + 4 х 2 х 2 = 9, то есть больше 0. Если же дискриминант равен нулю, вы сможете решить уравнение, но оно иметь всего один корень. Отрицательный дискриминант свидетельствует об отсутствии корней уравнения.
  • Найдите корень из дискриминанта (√D). Для этого вы можете воспользоваться калькулятором с алгебраическими функциями, онлайн-кулькулятором или специальной таблицей корней (обычно она приводится в конце учебников и справочников по алгебре). В нашем случае √D = √9 = 3.
  • Чтобы вычислить первый корень квадратного уравнения (X1), подставьте в выражение (-В + √D) полученное число и разделите результат на А, умноженное на 2. То есть Х1 = (-5 + 3) / (2 х 2) = -0,5.
  • Найти второй корень квадратного уравнения X2 можно заменив в формуле сумму на разность, то есть Х2 = (-В - √D) / 2A. В приведённом примере Х2 = (-5 - 3) / (2 х 2) = -2.
  • Отнимите от первого корня уравнения второй, то есть X1 – X2. При этом абсолютно не имеет значения то, в каком порядке вы подставите корни: конечный результат будет тот же. Полученное число – это разность корней, и вам осталось только найти модуль этого числа. В нашем случае X1 – X2 = -0,5 – (-2) = 1,5 или Х2 – Х1 = (-2) – (-0,5) = -1,5.
  • Модуль – это расстояние на оси координат от нуля до точки N, измеряемое в единичных отрезках, поэтому модуль любого числа не может быть отрицательным. Найти модуль числа можно следующим образом: модуль положительного числа равен ему самому, а модуль отрицательного – противоположное ему число. То есть |1,5| = 1,5 и |-1,5| = 1,5.

Как найти объем параллелепипеда
Как найти объем параллелепипеда
Как определить формулу скорости
Как определить формулу скорости
Как вычислить площадь параллелограмма
Как вычислить площадь параллелограмма
Как ослабить или усилить гидролиз
Как ослабить или усилить гидролиз
Как построить усеченный конус
Как построить усеченный конус
Как переменный ток сделать постоянным
Как переменный ток сделать постоянным

© CompleteRepair.Ru