Эврика!

Как найти периметр равнобедренной трапеции

Содержание

  1. Инструкция

Как найти периметр равнобедренной трапеции

Трапеция - это двухмерная геометрическая фигура, имеющая четыре вершины и лишь две параллельные стороны. Если длина двух ее непараллельных сторон одинакова, то трапеция называется равнобедренной или равнобокой. Границу такого многоугольника, составленную из его сторон, принято обозначать греческим словом «периметр». В зависимости от набора исходных данных вычислять длину периметра нужно по разным формулам.

Инструкция

  • Если известны длины обоих оснований (a и b) и длина боковой стороны (c), то периметр (P) этой геометрической фигуры рассчитывается очень просто. Так как трапеция равнобедренна, то ее боковые стороны имеют одинаковую длину, а это значит, что вам известны длины всех сторон - просто сложите их: P = a+b+2*c.
  • Если длины обоих оснований трапеции неизвестны, но дана длина средней линии (l) и боковой стороны (c), то и этих данных достаточно для вычисления периметра (P). Средняя линия параллельна обоим основаниям и по длине равна их полусумме. Удвойте это значение и добавьте к нему тоже удвоенную длину боковой стороны - это и будет периметром равнобедренной трапеции: P = 2*l+2*c.
  • Если из условий задачи известны длины обоих оснований (a и b) и высота (h) равнобедренной трапеции, то с помощью этих данных можно восстановить длину недостающей боковой стороны. Сделать это можно рассмотрев прямоугольный треугольник, в котором гипотенузой будет неизвестная сторона, а катетами - высота и короткий отрезок, который она отсекает от длинного основания трапеции. Длину этого отрезка можно вычислить, поделив пополам разность между длинами большего и меньшего оснований: (a-b)/2. Длина гипотенузы (боковой стороны трапеции), согласно теореме Пифагора, будет равна квадратному корню из суммы возведенных в квадрат длин обоих известных катетов. Замените в формуле из первого шага длину боковой стороны полученным выражением, и вы получите такую формулу периметра: P = a+b+2*√(h²+(a-b)²/4).
  • Если в условиях задачи даны длины меньшего основания (b) и боковой стороны (c), а также высота равнобедренной трапеции (h), то рассматривая тот же вспомогательный треугольник, что и в предыдущем шаге, вам придется вычислять длину катета. Вновь воспользуйтесь теоремой Пифагора - искомая величина будет равна корню из разности между возведенной в квадрат длиной боковой стороны (гипотенузы) и высотой (катетом): √(c²-h²). По этому отрезку неизвестного основания трапеции можно восстановить его длину - удвойте это выражение и добавьте к результату длину короткого основания: b+2*√(c²-h²). Подставьте это выражение в формулу из первого шага и найдите периметр равнобедренной трапеции: P = b+2*√(c²-h²)+b+2*c = 2*(√(c²-h²)+b+c).

Как начертить ромб
Как начертить ромб
Как найти площадь конуса
Как найти площадь конуса
Как нарисовать параболу
Как нарисовать параболу
Как перевести градусы Цельсия в Фаренгейт
Как перевести градусы Цельсия в Фаренгейт
Как освоить математику
Как освоить математику
Как определить корень слова
Как определить корень слова

© CompleteRepair.Ru