Эврика!

Как определить степень уравнения

Содержание

  1. Инструкция

Как определить степень уравнения

Уравнение представляет собой математическое соотношение, которое отражает равенство двух алгебраических выражений. Чтобы определить его степень, необходимо внимательно посмотреть на все присутствующие в нем переменные.

Инструкция

  • Решение любого уравнения сводится к нахождению таких значений переменной х, которые после подстановки в исходное уравнение дают верное тождество - выражение, не вызывающее никаких сомнений.
  • Степень уравнения - это максимальный или наибольший показатель степени переменной, присутствующей в уравнении. Чтобы ее определить, достаточно обратить внимание на значение степеней имеющихся переменных. Максимальная величина и определяет степень уравнения.
  • Уравнения бывают разных степеней. К примеру, линейные уравнения вида ax+b=0 имеют первую степень. В них присутствуют только неизвестные в названной степени и числа. Важно отметить отсутствие дробей с неизвестной величиной в знаменателе. Любое линейное уравнение сводится к изначальному виду: ax+b=0, где b может являться любым числом, а a - любым, но не равным 0. Если вы привели запутанное и длинное выражение к надлежащему виду ax+b=0, можно с легкостью найти не более одного решения.
  • Если в уравнении есть неизвестное во второй степени, оно является квадратным. Кроме того, в нем могут быть и неизвестные в первой степени, и числа, и коэффициенты. Но в таком уравнении отсутствуют дроби с переменной в знаменателе. Любое квадратное уравнение, подобно линейному, сводится к виду: ax^2+bx +c=0. Здесь a, b и с – любые числа, при этом число a не должно быть равным 0. Если, упрощая выражение, вы обнаружили уравнение вида ax^2+bx+c=0, дальнейшее решение довольно простое и предполагает не более двух корней. В 1591 году Франсуа Виет вывел формулы для нахождения корней квадратных уравнений. А Евклид и Диофант Александрийский, Аль-Хорезми и Омар Хайям использовали геометрические способы нахождения их решений.
  • Существует также и третья группа уравнений, которая называется дробными рациональными уравнениями. Если в исследуемом уравнении присутствуют дроби с переменной в знаменателе, то это уравнение - дробное рациональное или же просто дробное. Чтобы найти решения таких уравнений, надо всего лишь уметь с помощью упрощений и преобразований сводить их к рассмотренным двум известным типам.
  • Все остальные уравнения составляют четвертую группу. Их больше всего. Сюда входят и кубические, и логарифмические, и показательные, и тригонометрические их разновидности.
  • Решение кубических уравнений состоит также в упрощении выражений и нахождении не более 3 корней. Уравнения, имеющие более высокую степень, решаются разными способами, в том числе и графическим, когда на основе известных данных рассматриваются построенные графики функций и отыскиваются точки пересечений линий графиков, координаты которых и являются их решениями.

Как найти произведение матриц
Как найти произведение матриц
Может ли вода течь в гору
Может ли вода течь в гору
Как написать школьный проект
Как написать школьный проект
Как по сторонам треугольника узнать угол
Как по сторонам треугольника узнать угол
Как определить сопротивление
Как определить сопротивление
Кто первым высадился на Луне
Кто первым высадился на Луне

© CompleteRepair.Ru