Эврика!

Как вычислять координаты точек пересечения парабол

Содержание

  1. Инструкция

Как вычислять координаты точек пересечения парабол

Параболы на плоскости могут пересекаться в одной или двух точках, либо вообще не иметь точек пересечения. Поиск таковых точек — типичная задача алгебры, входящая в программу школьного курса.

Инструкция

  • Убедитесь в том, что по условиям задачи вам известны уравнения обеих парабол. Парабола — это кривая на плоскости, задаваемая уравнением следующего вида y = ax² + bx + c (формула 1), где a, b и c - некоторые произвольные коэффициенты, причем коэффициент a ≠ 0. Таким образом, две параболы будут заданы посредством формул y = ax² + bx + c и y = dx² + ex + f. Пример — заданы параболы с формулами y = 2x² - x - 3 и y = x² -x + 1.
  • Теперь вычтите из одного из уравнений параболы другое. Произведите, таким образом, расчет следующего вида: ax² + bx + c - (dx² + ex + f) = (a-d)x² + (b-e)x + (c-f). Получился полином второй степени, коэффициенты которого вы легко можете вычислить. Чтобы найти координаты точек пересечения парабол, достаточно поставить знак равенства нулю и найти корни получившегося квадратного уравнения (a-d)x² + (b-e)x + (c-f) = 0 (формула 2). Для приведенного выше примера получим y = (2-1)x² -x + x + (-3 - 1) = x² - 4 = 0.
  • Корни квадратного уравнения (формула 2) ищем по соответствующей формуле, которая есть в любом учебнике алгебры. Для приведенного примера существует два корня x = 2 и x = -2. Кроме того, в формуле 2 значение коэффициента при квадратичном члене (a-d) может быть равным нулю. В этом случае уравнение окажется не квадратным, а линейным и всегда будет иметь один корень. Заметьте, в общем случае квадратное уравнение (формула 2) может иметь два корня, один корень, либо вовсе не иметь ни одного — в последнем случае параболы не пересекаются и задача не имеет решения.
  • Если, все же, найден один или два корня, их значения нужно подставить в формулу 1. В нашем примере подставляем вначале x = 2, получаем y = 3, затем подставляем x = -2, получаем y = 7. Две получившиеся точки на плоскости (2;3) и (-2;7) и являются координатами пересечения парабол. Других точек пересечения у этих парабол нет.

Почему человек относится к млекопитающим
Почему человек относится к млекопитающим
Как найти молекулярную массу
Как найти молекулярную массу
Как рассчитать радиус
Как рассчитать радиус
Как собрать пушку гаусса
Как собрать пушку гаусса
Как найти косинус угла
Как найти косинус угла
Современная экология как наука
Современная экология как наука

© CompleteRepair.Ru