Как из формулы выразить переменную
Понятие «формула» достаточно широко используется не только в точных науках, но применительно к математике этим словом чаще всего обозначают некоторое тождество. Это запись двух последовательностей математических операций, примененных к одной или нескольким переменным, между которыми стоит знак равенства. Чтобы выразить одну переменную тождества через все остальные, надо преобразовать это равенство таким образом, чтобы в левой части осталась только эта переменная.
Начните преобразования, например, с избавления от дробей, если они есть в исходной формуле. Для этого обе части равенства умножьте на общий знаменатель. Например, формула 3*Y = √X/2 после этого шага должна приобрести вид 6*Y = √X.
Если выражение в одной части равенства содержит корень какой-либо степени, то избавьтесь и от него, возведя обе части тождества в степень, равную показателю корня. Для примера, приведенного выше, это действие должно выразиться в преобразованиик такому виду: 36*Y² = X. Иногда операцию этого шага удобнее произвести до действия из шага предыдущего.
Преобразуйте выражение таким образом, чтобы все члены тождества, содержащие нужную переменную, оказались в левой части равенства. Например, если формула имеет вид 36*Y-X*Y+5=X и вас интересует переменная X, достаточно будет поменять местами левую и правую половины тождества. А если выразить нужно Y, то формула в результате этого действия должна приобрести вид 36*Y-X*Y=X-5.
Упростите выражение в левой части формулы так, чтобы искомая переменная стала одним из сомножителей. Например, для формулы из предыдущего шага это можно сделать так: Y*(36-X)=X-5.
Разделите выражения по обе стороны знака равенства на сомножители интересующей вас переменной. В результате в левой части тождества должна остаться только эта переменная. Использованный выше пример после этого шага приобрел бы такой вид: Y = (X-5)/(36-X).
Если искомая переменная в результате всех преобразований будет возведена в какую в степень, то избавьтесь от степени извлечением корня из обеих частей формулы. Например, формула из второго шага к этому этапу преобразований должна прибрести вид Y²=X/36. А ее окончательный вид должен стать таким: Y=√X/6.