Главная Войти О сайте

Как найти боковое ребро в пирамиде

Пирамида представляет собой многогранник, грани которого являются треугольниками, имеющими общую вершину. Вычисление бокового ребра изучают в школе, на практике часто приходится вспоминать подзабытую формулу.Как найти боковое ребро в пирамиде

По виду основания пирамида может быть треугольной, четырехугольной и т.п. Треугольная пирамида называется еще и тетраэдром. В тетраэдре любая грань может быть принята за основание.

Пирамида бывает правильной, прямоугольной, усеченной и др. Правильной пирамида называется в том случае, если ее основанием является правильный многоугольник. Тогда центр пирамиды проецируется на центр многоугольника, а боковые ребра пирамиды равны. В такой пирамиде боковые грани являются одинаковыми равнобедренными треугольниками.

Прямоугольная пирамида называется тогда, когда одно из ее ребер перпендикулярно основанию. Высотой такой пирамиды является именно это ребро. В основе вычислений значений высоты прямоугольной пирамиды, длин ее боковых ребер лежит всем известная теорема Пифагора.

Для вычисления ребра правильной пирамиды необходимо провести ее высоту из вершины пирамиды на основание. Далее рассматривать искомое ребро как катет в прямоугольном треугольнике, также используя теорему Пифагора.

Боковое ребро в этом случае вычисляется по формуле b=√ h2+ (a2•sin (180°
) 2. Оно является квадратным корнем из суммы квадратов двух сторон прямоугольного треугольника. Одной стороной является высота пирамиды h, другая сторона – отрезок, соединяющий центр основания правильной пирамиды с вершиной этого основания. В этом случае а – сторона правильного многоугольника основания, n - число его сторон.


CompleteRepair.Ru