Главная Войти О сайте












Как найти длину ребра пирамиды

Пирамида – это фигура, у которой есть основание в виде многоугольника и боковые грани со сходящимися вверху вершинами. Границы боковых граней называются ребрами. А как же найти длину ребра пирамиды?Как найти длину ребра пирамиды

Найдите граничные точки ребра, длину которого ищете. Пусть это будут точки А и В.

Задайте координаты точек А и В. Их нужно задавать трехмерными, т.к. пирамида – объемная фигура. Получите А(х1, у1, z1) и B(x2, y2, z2).

Вычислите нужную длину, используя общую формулу: длина ребра пирамиды равняется корню суммы квадратов разниц соответствующих координат граничных точек. Подставьте цифры ваших координат в формулу и найдите длину ребра пирамиды. Таким же образом найдите длину ребер не только правильной пирамиды, но и прямоугольной, и усеченной, и произвольной.

Найдите длину ребра пирамиды, у которой все ребра равны, заданы стороны основания фигуры и известна высота. Определите месторасположение основания высоты, т.е. нижней ее точки. Так как ребра равны, значит можно провести окружность, центром которой будет точка пересечения диагоналей основания.

Проведите прямые линии, соединяющие противоположные углы основания пирамиды. Отметьте точку, где они пересекаются. Эта же точка и будет нижней границей высоты пирамиды.

Найдите длину диагонали прямоугольника с помощью теоремы Пифагора, где сумма квадратов катетов прямоугольного треугольника равна квадрату гипотенузы. Получите а2+b2=c2, где а и b – катеты, а с - гипотенуза. Гипотенуза тогда будет равна корню из суммы квадратов катетов.

Найдите длину ребра пирамиды. Сначала поделите длину диагонали пополам. Все полученные данные подставьте значения в формулу Пифагора, описанную выше. Аналогично предыдущему примеру найдите корень из суммы квадратов высоты пирамиды и половины диагонали.


CompleteRepair.Ru