Главная Войти О сайте

Как найти градиент

При рассмотрениивопросов, включающих понятие градиента, чаще всего функции воспринимают как скалярные поля. Поэтому необходимо ввести соответствующие обозначения.Как найти градиентВам понадобится

Пусть функция задается тремя аргументами u=f(x, y, z). Частную производную функции, на пример по х, определяют как производную по этому аргументу, полученную при фиксированииостальных аргументов. Для остальных аргументов аналогично. Обозначения частной производной записывается в виде: дf/дх = u’x …

Полный дифференциал будет равен du=(дf/дх)dx+ (дf/дy)dy+(дf/дz)dz.

Частные производные можно понимать, как производные по направлениям координатных осей. Поэтому возникаетвопрос о нахождении производной по направлению заданного вектора s в точке M(x, y, z) (не забывайте, что направление s задает единичный вектор-орт s^o). При этом вектор-дифференциал аргументов {dx, dy, dz}={дscos(альфа), дsсоs(бета), дsсоs(гамма)}.

Учитывая видполного дифференциала du, можно сделать вывод, что производная по направле-нию s в точке М равна:

(дu/дs)|M=((дf/дх)|M)соs(альфа)+ ((дf/дy)|M) соs(бета) +((дf/дz)|M) соs(гамма).
Если s= s(sx,sy,sz), то направляющие косинусы {соs(альфа), соs(бета), соs(гамма)} вычисляются (см. рис.1а).Как найти градиент

Определение производной по направлению, считая точку М переменной, можно переписать в виде скалярного произведения:
(дu/дs)=({дf/дх, дf/дy,дf/дz}, {соs(альфа), соs(бета), соs(гамма)})=(grad u, s^o).

Данное выражение будет справедливо для скалярного поля. Если рассматривается просто функ-ция, то gradf – это вектор, имеющий координаты, совпадающие с частными производными f(x, y, z).

gradf(x,y,z)={{дf/дх, дf/дy, дf/дz}=)=(дf/дх)i+(дf/дy)j +(дf/дz)k.

Здесь (i, j, k) – орты координатных осей в прямоугольной декартовой системе координат.

Если использовать дифференциальный вектор-оператор Гамильтона набла, тоgradfможно записать, как умножение этого вектора-оператора на скаляр f (см. рис. 1б).

С точки зрения связи gradfcпроизводной по направлению, равенство (gradf, s^o)=0 возможно, если эти векторы ортогональны. Поэтому gradfчасто определяют, как направление быстрейшего изменения скалярного поля. А с точки зрения дифференциальных операций (gradf- одна из них), свойства gradfв точности повторяют свойства дифференцирования функций. В частности, если f=uv, то gradf=(vgradu+u gradv).


CompleteRepair.Ru