Главная Войти О сайте

Как найти коэффициент пропорциональности

Две взаимозависимые величины являются пропорциональными, если отношение их значений не изменяется. Это неизменное отношение величин называют коэффициентом пропорциональности.Как найти коэффициент пропорциональностиВам понадобится

Прежде чем найти коэффициент , познакомьтесь поближе со свойствами пропорций. Предположим, что дано четыре отличающихся друг от друга числа, каждое из которых не равно нулю (a, b, c и d), а отношение между этими числами имеет следующий вид: a : b = c : d. В этом случае a и d являются крайними членами пропорции, b и c – средними членами таковой.

Основное свойство, которым обладает пропорция: произведение ее крайних членов равно результату умножения средних членов данной пропорции. Другими словами, ad = bc.

Вместе с тем при перестановке средних (a : c = b : d) и крайних членов пропорции (d : b = c : a) отношение между данными величинами остается справедливым.

Две взаимозависимые величины пропорции соотносятся следующим образом: y = kx, при условии, что k не равен нулю. В этом равенстве k является коэффициентом пропорциональности, а y и x - пропорциональными переменными. О переменной у говорят, что она является пропорциональной переменной х.

При расчете коэффициента пропорциональности обратите внимание на тот факт, что таковая может быть прямой и обратной. Область определения прямой пропорциональности – множество всех чисел. Из отношения пропорциональных переменных следует, что у/х = k.

Чтобы выяснить, является ли данная пропорциональность прямой, сравните частные у/х для всех пар с соответствующими значениями переменных х и у, при условии, что х ≠ 0.

Если сравниваемые вами частные равны одному и тому же k (этот коэффициент пропорциональности не должен равняться нулю), то зависимость у от х является прямо пропорциональной.

Обратная пропорциональная зависимость проявляется в том, что с увеличением (либо уменьшением) одной величины в несколько раз, вторая пропорциональная переменная уменьшается (увеличивается) во столько же раз.


CompleteRepair.Ru