Главная Войти О сайте












Как найти корень квадратного трехчлена

Найти корень квадратного трехчлена можно через дискриминант. Кроме того, для приведенного многочлена второй степени действует теорема Виета, основанная на соотношении коэффициентов.Как найти корень квадратного трехчлена

Квадратные уравнения – довольно обширная тема в школьной алгебре. Левая часть такого уравнения представляет собой многочлен второй степени вида А•х² + B•х + C, т.е. выражение из трех одночленов разной степени неизвестной х. Чтобы найти корень квадратного трехчлена, нужно вычислить такое значение х, при котором выполняется равенство этого выражения нулю.

Для решения квадратного уравнения нужно найти дискриминант. Его формула является следствием выделения полного квадрата многочлена и представляет собой определенное соотношение его коэффициентов:

D = B² – 4•А•C.

Дискриминант может принимать различные значения, в том числе быть отрицательным. И если младшие школьники могут с облегчением сказать, что корней у такого уравнения нет, то старшеклассники уже способны их определить, исходя из теории комплексных чисел. Итак, вариантов может быть три:

• Дискриминант – положительное число. Тогда корни уравнения равны: х1 = (-B + √D)/2•А; х2 = (-B - √D)/2•А;
• Дискриминант обратился в ноль. Теоретически в этом случае уравнение также имеет два корня, но практически они одинаковы: х1 = х2 = -B/2•А;
• Дискриминант меньше нуля. В расчет вводится некая величина i² = -1, которая позволяет записать комплексное решение: х1 = (-B + i•√|D|)/2•А; х2 = (-B - i•√|D|)/2•А.

Метод дискриминанта справедлив для любого квадратного уравнения, однако есть ситуации, когда целесообразно применить более быстрый способ, особенно при небольших целочисленных коэффициентах. Этот способ называется теоремой Виета и заключается в паре соотношений между коэффициентами в приведенном трехчлене:

х² + P•х + Q
х1 + х2 = -P;
х1•х2 = Q.

Остается только подобрать корни.

Следует отметить, что уравнение может быть приведено к подобному виду. Для этого нужно разделить все слагаемые трехчлена на коэффициент при старшей степени А:

А•х² + B•х + C |А
х² + B/А•х + C/А
х1 + х2 = -B/А;
х1•х2 = C/А.


CompleteRepair.Ru