
Рассмотрите кубическое уравнение вида Ax³+Bx²+Cx+D=0, где A≠0. Найдите корень уравнения методом подбора. Примите во внимание, что один из корней уравнения третьей степени всегда является делителем свободного члена.
Найдите все делители коэффициента D, то есть все целые числа (положительные и отрицательные), на которые свободный член D делится без остатка. Подставьте их поочередно в исходное уравнение на место переменной x. Найдите то число x1, при котором уравнение обращается в верное равенство. Оно и будет являться одним из корней кубического уравнения. Всего у кубического уравнения три корня (как вещественные, так и комплексные).
Разделите многочлен на Ax³+Bx²+Cx+D на двучлен (x-x1). В результате деления получится квадратный многочлен ax²+bx+c, остаток будет равен нулю.
Приравняйте полученный многочлен к нулю: ax²+bx+c=0. Найдите корни этого квадратного уравнения по формулам x2=(-b+√(b²−4ac))/(2a), x3=(-b−√(b²−4ac))/(2a). Они также будут являться корнями исходного кубического уравнения.
Рассмотрите пример. Пусть дано уравнение третьей степени 2x³−11x²+12x+9=0. A=2≠0, а свободный член D=9. Найдите все делители коэффициента D: 1, -1, 3, -3, 9, -9. Подставьте эти делители в уравнение вместо неизвестного x. Получается, 2×1³−11×1²+12×1+9=12≠0; 2×(-1)³−11×(-1)²+12×(-1)+9=-16≠0; 2×3³−11×3²+12×3+9=0. Таким образом, один из корней данного кубического уравнения x1=3. Теперь разделите обе части исходного уравнения на двучлен (x−3). В результате получается квадратное уравнение: 2x²−5x−3=0, то есть a=2, b=-5, c=-3. Найдите его корни: x2=(5+√((-5)²−4×2×(-3)))/(2×2)=3,x3=(5−√((-5)²−4×2×(-3)))/(2×2)=-0,5. Таким образом, кубическое уравнение 2x³−11x²+12x+9=0 имеет действительные корни x1=x2=3 и x3=-0,5.