Как найти косинус угла треугольника с вершинами
Содержание:- Косинус угла и его применение
- Нахождение косинуса острого угла
- Определение косинуса через синус
- Вычисление косинуса при известных сторонах треугольника
- Нахождение косинуса тупого угла
Косинус угла и его применение
Косинусом угла называется отношение прилежащего к данному углу катета к гипотенузе. Эта величина, как и другие тригонометрические соотношения, используется для решения не только прямоугольных треугольников, но и многих других задач.
Нахождение косинуса острого угла
Для произвольного треугольника с вершинами А, В и С задача нахождения косинуса одинакова для всех трех углов, если треугольник остроугольный. Если в треугольнике есть тупой угол, определение его косинуса следует рассмотреть отдельно.
В остроугольном треугольнике с вершинами А, В и С найдите косинус угла при вершине А. Опустите высоту из вершины В на сторону треугольника АС. Точку пересечения высоты со стороной АС обозначьте D и рассмотрите прямоугольный треугольник АВD. В этом треугольнике сторона АВ исходного треугольника является гипотенузой, а катеты — высота ВD исходного остроугольного треугольника и отрезок АD, принадлежащий стороне АС. Косинус угла А равен отношению АD/АВ, поскольку катет АD является прилежащим к углу А в прямоугольном треугольнике АВD. Если известно, в каком соотношении высота ВD делит сторону АС треугольника, то косинус угла А найден.
Определение косинуса через синус
Если же величина АD не дана, но известна высота ВD, косинус угла можно определить через его синус. Синус угла А равен отношению высоты ВD исходного треугольника к стороне АС. Основное тригонометрическое тождество устанавливает связь между синусом и косинусом угла: Sin² A+ Cos² A=1. Для нахождения косинуса угла А вычислите: 1- (ВD/AC)², из полученного результата нужно извлечь квадратный корень. Косинус угла А найден.
Вычисление косинуса при известных сторонах треугольника
Если в треугольнике известны все стороны, то косинус любого угла найдите по теореме косинусов: квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними. Тогда косинус угла А в треугольнике со сторонами а, b, с вычислите по формуле: Cos A = (а²-b²-c²)/2*b*с.
Нахождение косинуса тупого угла
Если в треугольнике нужно определить косинус тупого угла, воспользуйтесь формулой приведения. Тупой угол треугольника больше прямого, но меньше развернутого, он может быть записан как 180°-α, где α — острый угол, дополняющий тупой угол треугольника до развернутого. По формуле приведения найдите косинус: Cos (180°-α)= Cos α.