Главная Войти О сайте

Как найти образующую усеченного конуса

Усеченным конусом называется геометрическое тело, которое получилось в результате сечения полного конуса плоскостью, параллельной его основанию. Согласно другому определению, усеченный конус образован вращением прямоугольной трапеции вокруг той ее боковой стороны, которая перпендикулярна основаниям. Вторая боковая сторона при этом является образующей. Вычислять ее необходимо так же, как и боковую сторону прямоугольной трапеции.Как найти образующую усеченного конусаВам понадобится

Сделайте чертеж. Обозначьте на нем заданные размеры усеченного конуса. Его можно построить по нескольким параметрам. Вам должны быть известны радиусы основания и высота. Могут быть и другие наборы данных — например, радиусы обоих оснований и угол наклона образующей к одному из них. Могут быть заданы высота, угол наклона и один из радиусов. Если вы пока еще не знаете нужных для построения точного чертежа параметров, начертите конус приблизительно и обозначьте имеющиеся условия.

Постройте осевое сечение. Оно представляет собой равнобедренную трапецию ABCD, параллельные стороны которой являются диаметрами основания, а боковые — образующими. Обозначьте точки пересечения оси с основаниями усеченного конуса как O' и O''. Ось О'О'' одновременно является и высотой прямого усеченного конуса. Обозначьте радиус нижнего основания как R, а верхнего — как r. Образующую CD обозначьте как L.

Выполните дополнительное построение. Начертите из точки C высоту к радиусу нижнего основания. Она будет параллельная и равна оси O'O''. Точку пересечения ее с плоскостью нижнего основания обозначьте как N, а саму высоту — h. У вас получился прямоугольный треугольник CND.

Посмотрите, какие данные для вычисления гипотенузы этого треугольника у вас имеются и найдите недостающие. При условии, что даны оба радиуса, найдите сторону DN. Она равна разности радиусов R и r. То есть, согласно теореме Пифагора, сторона L в данном случае равна квадратному корню из суммы квадратов высоты и разности радиусов или L = √h2+(R-r)2.

Если даны высота h и угол наклона образующей к основанию, найдите образующую L по теореме синусов. Она равна дроби, в числителе которой будет известный катет h, а в знаменателе — синус противолежащего ей угла СDN.

При условии, что даны радиус верхней окружности, высота и угол BCD, вычислите сначала нужный вам угол наклона образующей к нижнему основанию. Вспомните, чему равна сумма углов выпуклого четырехугольника. Она равна 360°. У прямоугольной трапеции O'O''CD вам известны три угла. Найдите по ним четвертый и по его синусу — образующую.


CompleteRepair.Ru