Главная Войти О сайте












Как найти периметр шестиугольника

Как известно, периметром плоской фигуры называется длина ограничивающей ее линии. Чтобы найти периметр многоугольника достаточно сложить длины его сторон. Для этого придется измерить длины всех составляющих его отрезков. Если же многоугольник правильный, то задача нахождения периметра намного упрощается.Как найти периметр шестиугольникаВам понадобится

Чтобы найти периметр , измерьте и сложите длины всех его шести сторон. Р = а1+а2+а3+а4+а5+а6,где P – периметр шестиугольника, а а1, а2 … а6 – длины его сторон.Единицы измерения каждой из сторон приведите к одному виду – в этом случае достаточно будет сложить только числовые значения длин сторон. Единица измерения периметра шестиугольника будет совпадать с единицей измерения сторон.

Пример.Имеется шестиугольник с длинами сторон 1 см, 2 мм, 3 мм, 4 мм, 5 мм, 6 мм. Требуется найти его периметр.Решение.1. Единица измерения первой стороны (см) отличается от единиц измерения длин остальных сторон (мм). Поэтому, переведите: 1 см = 10 мм.2. 10+2+3+4+5+6=30 (мм).

Если шестиугольник правильный, то чтобы найти его периметр, умножьте длину его стороны на шесть:Р = а * 6,где а – длина стороны правильного шестиугольника.Пример.Найти периметр правильного шестиугольника с длиной стороны равной 10 см.Решение: 10 * 6 = 60 (см).

Правильный шестиугольник обладает уникальным свойством: радиус описанной вокруг такого шестиугольника окружности равен длине его стороны. Поэтому, если известен радиус описанной окружности, до воспользуйтесь формулой:P = R * 6,где R – радиус описанной окружности.

Пример.Рассчитать периметр правильного шестиугольника, писанного в окружность диаметром 20 см.Решение. Радиус описанной окружности будет равен: 20/2=10 (см).Следовательно, периметр шестиугольника:10 * 6 = 60 (см).

Если по условиям задачи задан радиус вписанной окружности, то примените формулу:P = 4 * √3 * r,где r – радиус вписанной в правильный шестиугольник окружности.

Если известна площадь правильного шестиугольника, то для расчета периметра используйте следующее соотношение:S = 3/2 * √3 * а²,гдеS – площадь правильного шестиугольника. Отсюда можно найти а = √(2/3 * S / √3), следовательно:Р = 6 * а = 6 * √(2/3 * S / √3) = √(24 * S / √3) = √(8 * √3 * S) = 2√(2S√3).


CompleteRepair.Ru