Главная Войти О сайте

Как найти стороны прямоугольного треугольника по площади

В некоторых задачах по геометрии требуется найти площадь прямоугольного треугольника, если известны длины его сторон. Так как длины сторон прямоугольного треугольника связаны теоремой Пифагора, а его площадь равна половине произведения длин катетов, то для решения этой задачи достаточно знать длины двух его любых сторон. Если же нужно решить обратную задачу – найти стороны прямоугольного треугольника по его площади, то потребуется дополнительная информация.Как найти стороны прямоугольного треугольника по площадиВам понадобится

Чтобы найти стороны равнобедренного прямоугольного треугольника по его площади, воспользуйтесь следующими формулами:К = √(2*Пл) или К = √2*√Пл и
Д = 2*√Пл, где
Пл – площадь треугольника,
К – длина катета треугольника,
Д – длина его гипотенузы.Длины сторон при этом будут выражаться в соответствующих площади линейных единицах измерения. Так, например, если площадь задана в квадратных сантиметрах (см²), то длины сторон будут измеряться в сантиметрах (см).Обоснование формул.
Площадь равнобедренного прямоугольного треугольника:
Пл = ½ * К², значит К² = 2 * Пл.
Теорема Пифагора для равнобедренного прямоугольного треугольника:
Д²=2 * К², значит Д = √2 * К.Пусть, например, площадь равнобедренного прямоугольного треугольника равняется 25 см². В этом случае, длина его катетов будет равняться:
К = √2 * √25 = 5√2, а длина гипотенузы:
Д = 2 * √25 = 10.

Чтобы найти длину сторон прямоугольного треугольника по его площади в общем случае, уточните значение какого-либо из дополнительных параметров. Это может быть соотношение катетов или соотношение катета и гипотенузы, один из острых углов треугольника, длина одной из сторон или его периметр.
Для расчета длин сторон треугольника в каждом конкретном случае воспользуйтесь теоремой Пифагора (Д² = К1² + К2²) и следующим равенством:Пл = ½ * К1 * К2, где
К1 и К2 – длины катетов.
Отсюда вытекает, что: К1 = 2Пл / К2 и, наоборот, К2 = 2Пл / К1.

Так, например, если соотношение катетов прямоугольного треугольника (К1/К2) равно Скк,
то К1 = Скк * К2 = Скк * 2Пл / К1, значит,К1 = √(2 * Скк * Пл)
К2 = √(2 * Скк * Пл) / Скк
Д = √((2 * Скк * Пл) + ((2 * Скк * Пл) / Скк))Пусть площадь прямоугольного треугольника – 25 см², а соотношение его катетов (К1/К2) равно 2, тогда по вышеприведенной формуле получается:К1 = √(2*2*25) = 10,
К2 = 10/2 = 5,
Д = √(10²+5²) = √125

Аналогично вычисляются длины сторон и в остальных случаях. Пусть, например, известны площадь (Пл) и периметр (Пе) прямоугольного треугольника.
Так как Пе = К1 + К2 + Д, а Д² = К1² + К2², то получается система из трех уравнений:К1 + К2 + Д = Пе
К1² + К2² = Д²
К1 * К2 = 2Пл,при решении которой в каждом конкретном случае определяются длины сторон треугольника.
Пусть, например, площадь прямоугольного треугольника 6, а периметр – 12 (соответствующих единиц).
В этом случае получается следующая система:К1+К2+Д = 12
К1² + К² = Д²
К1 * К2 = 12,
решив которую, можно узнать, что длины сторон треугольника равны 3, 4, 5.


CompleteRepair.Ru