Как найти внешний угол треугольника
Содержание:- Внешний угол треугольника
- Инструкция 1
- Острый угол и тупой внешний угол
- Известны другие два угла треугольника
- Использование тригонометрических зависимостей
- Определение внешнего угла при известных сторонах
Внешний угол треугольника
Внешний угол треугольника является смежным внутреннему углу фигуры. В сумме эти углы при каждой из вершин треугольника составляют 180° и представляют развернутый угол.
Инструкция 1
Из названия очевидно, что внешний угол лежит за пределами треугольника. Чтобы представить себе внешний угол, продлите сторону фигуры за вершину. Угол между продолжением стороны и второй стороной треугольника, выходящей из этой вершины, и будет внешним для угла треугольника при данной вершине.
Острый угол и тупой внешний угол
Очевидно, что острому углу треугольника соответствует тупой внешний угол. Для тупого угла внешний угол — острый, а внешний угол прямого угла — прямой. Два угла с общей стороной и сторонами, принадлежащими одной прямой, являются смежными и в сумме составляют 180°. Если угол треугольника α известен по условию, то смежный с ним внешний угол β определяется так: β = 180° - α.
Известны другие два угла треугольника
Если угол α не задан, но известны другие два угла треугольника, то их сумма равна величине угла, внешнего по отношению к углу α. Это утверждение следует из того, что сумма всех углов треугольника равна 180°. В треугольнике внешний угол больше внутреннего угла, не смежного с ним.
Использование тригонометрических зависимостей
Если градусная мера угла треугольника не задана, но из соотношения сторон известны тригонометрические зависимости, то по этим данным также можно найти внешний угол:
- Sinα = Sin (180°-α)
- Cosα = -Cos (180°-α)
- tgα = -tg (180°-α)
Определение внешнего угла при известных сторонах
Внешний угол треугольника можно определить, если не задан ни один внутренний угол, а известны только стороны фигуры. Из связей между элементами треугольника определите одну из тригонометрических функций внутреннего угла. Вычислите соответствующую функцию искомого внешнего угла и по тригонометрическим таблицам Брадиса найдите его величину в градусах. Например, из формулы площади S=(b*c*Sinα)/2 определите Sinα, а затем внутренний и внешний угол в градусной мере. Или определите Cosα из теоремы косинусов a²=b²+c²-2bc*Cosα.