Главная Войти О сайте

Как найти высоту прямоугольной пирамиды

Пирамида - это многогранник, в основании которого лежит многоугольник, а остальные грани - треугольники, сходящиеся в общей вершине. Решение задач с пирамидами во многом зависит от вида пирамиды. У прямоугольной пирамиды одно из боковых ребер перпендикулярно основанию, это ребро и есть высота пирамиды.Как найти высоту прямоугольной пирамиды

Определите вид по ее основанию. Если в основании лежит треугольник, то это треугольная прямоугольная пирамида. Если четырехугольник — четырёхугольная и так далее. В классических задачах встречаются пирамиды, основание которой либо квадрат, либо равносторонние/равнобедренные/прямоугольные треугольники.

Если в основании пирамиды лежит квадрат, найдите высоту (она же — ребро пирамиды) через прямоугольный треугольник. Помните — в стереометрии на рисунках квадратвыглядит как параллелограмм. Например, дана прямоугольная пирамида SABCD с вершиной S, которая проецируется в вершину квадрата B. Ребро SB перпендикулярно плоскости основания. Рёбра SA и SC равны между собой и перпендикулярны сторонам AD и DC соответственно.

Если в задаче даны рёбра AB и SA, найдите высоту SB из прямоугольного ΔSAB по теореме Пифагора. Для этого из квадрата SA вычтите квадрат AB. Извлеките корень. Высота SB найдена.

Если не дана сторона квадрата AB, а, например, диагональ, то помните формулу: d=a·√2. Также выражайте сторону квадрата из формул площади, периметра, вписанных и описанных радиусов, если это дано в условии.

Если в задаче дано ребро AB и ∠SAB, используйте тангенс: tg∠SAB=SB/AB. Выразите из формулы высоту, подставьте числовые значения, тем самым найдя SB.

Если дан объём и сторона основания, найдите высоту, выразив её из формулы: V=⅓·S·h. S — площадь основания, то есть AB2; h — высота пирамиды, т. е. SB.

Если в основании пирамиды SABC (S проецируется в В, как в п.2, т. е. SB – высота) лежит треугольник и указаны данные для площади (сторона у равностороннего треугольника, сторона и основание или сторона и углы у равнобедренного, катеты у прямоугольного), находите высоту из формулы объёма: V=⅓·S·h. Вместо S подставьте формулу площади треугольника в зависимости его вида, затем выразите h.

Если дана апофема SK грани CSA и сторона основания AB, найдите SB из прямоугольного треугольника SKB. Из квадрата SK вычтите квадрат KB, получите SB в квадрате. Извлеките корень и получите высоту.

Если дана апофема SK и угол между SK и KB (∠SKB), используйте функцию синуса. Отношение высоты SB к гипотенузе SK равно sin∠SKB. Выразите высоту и подставьте числовые значения.


CompleteRepair.Ru