Главная Войти О сайте

Как определить угол между двумя прямыми

Прямая в пространстве задается каноническим уравнением, содержащем координаты ее направляющих векторов. Исходя из этого, определить угол между прямыми можно по формуле косинуса угла, образованного векторами.Как определить угол между двумя прямыми

Определить угол между двумя прямыми в пространстве можно, даже если они не пересекаются. В этом случае нужно мысленно совместить начала их направляющих векторов и вычислить величину получившегося угла. Иными словами, это любой из смежных углов, образованных скрещивающимися прямыми, проведенными параллельно данным.

Существует несколько способов задания прямой в пространстве, например, векторно-параметрический, параметрический и канонический. Три упомянутых метода удобно использовать при нахождении угла, т.к. все они предполагают введение координат направляющих векторов. Зная эти величины, можно определить образованный угол по теореме косинусов из векторной алгебры.

Предположим, две прямые L1 и L2 заданы каноническими уравнениями:L1: (x – x1)/k1 = (y – y1)/l1 = (z – z1)/n1;L2: (x – x2)/k2 = (y – y2)/l2 = (z – z2)/n2.

Используя величины ki, li и ni, запишите координаты направляющих векторов прямых. Назовите их N1 и N2:N1 = (k1, l1, n1);N2 = (k2, l2, n2).

Формула для косинуса угла между векторами представляет собой соотношение между их скалярным произведением и результатом арифметического умножения их длин (модулей).

Определите скалярное произведение векторов как сумму произведений их абсцисс, ординат и аппликат:N1•N2 = k1•k2 + l1•l2 + n1•n2.

Вычислите квадратные корни из сумм квадратов координат, чтобы определить модули направляющих векторов:|N1| = √(k1² + l1² + n1²);|N2| = √(k2² + l2² + n2²).

Используйте все полученные выражения, чтобы записать общую формулу косинуса угла N1N2:cos (N1N2) = (k1•k2 + l1•l2 + n1•n2)/( √(k1² + l1² + n1²)•√(k2² + l2² + n2²)).Чтобы найти величину самого угла, посчитайте arccos от этого выражения.

Пример: определить угол между заданными прямыми:L1: (x - 4)/1 = (y + 1)/(-4) = z/1;L2: x/2 = (y - 3)/(-2) = (z + 4)/(-1).

Решение:N1 = (1, -4, 1); N2 = (2, -2, -1).N1•N2 = 2 + 8 – 1 = 9;|N1|•|N2| = 9•√2.cos (N1N2) = 1/√2 → N1N2 = π/4.


CompleteRepair.Ru