Главная Войти О сайте












Как построить доверительный интервал

Интервал(l1, l2), центром которого является оценка l*, и в котором с вероятностьальфа заключено истинное значение параметра,называется доверительным интервалом, соответствующим доверительной вероятности альфа. Стоит отметить, что сама l* относится к оценкам точечным, а доверительный интервал– к интервальным.Как построить доверительный интервалВам понадобится

Следует сказать несколько слов о самих оценках. Пусть по результатам выборочных значений случайной величины Х {x1, x2,..., xn} требуется определить неизвестный параметр l, от которого зависит распределение. Получение оценки параметра l*состоит в том, что каждой выборке ставится в соответствие некоторое значение параметра, то есть создается функция результатов наблюдения Q, значение которой и принимается равным оценочному значению параметраl*=Q( x1, x2,..., xn).

Любая функция результатов наблюдений называется статистикой. Если при этом она полностью описывает данный параметр (явление), то ее называют достаточной статистикой. Так как результаты наблюдений случайны, то l* также случайная величина. Задача определения статистикидолжна решаться с учетом ее критериев качества. При этом следует отметить,что законраспределения оценки вполне определен, если известно распределение W(x, l)(W – плотность вероятности).

Доверительная вероятность выбирается самим исследователем и должна быть достаточно большой, то есть такой, чтобы в условиях рассматриваемой задачи ее можно было бы считать вероятностью практически достоверного события.Доверительный интервал может быть вычислен наиболее просто, если известен закон распределения оценки. Для примера можно рассмотреть доверительный интервал оценки математического ожидания (среднего значения случайной величины)mx* =(1/n)(x1+x2+ …+xn) . Такая оценка является несмещенной, то есть ее математическое ожидание (среднее значение) равно истинному значению параметра (М{ mx*} = mx).

Кроме того, легко установить, что дисперсия оценки математического ожидания бх*^2=Dx/n. На основе центральной предельной теоремы можно сделать вывод, что закон распределения этой оценки гауссовский(нормальный). Следовательно, для проведения расчетов можно использовать интеграл вероятностей Ф(z)(не надо путать с Ф0(z) – одной из форм интеграла). Тогда, выбрав длину доверительного интервала равной 2lд , получится:альфа = P{mx-lд

Отсюда вытекает следующая методика построения доверительного интервала оценки математического ожидания:1.Задавшись доверительной вероятностью альфа, найдите величину (альфа+1)/2.2.По таблицам интеграла вероятности выберете значение lд/sqrt(Dx/n).3.Так как истинная дисперсия неизвестна, вместо нее можно взять ее оценку:Dx*=(1/n)((x1 - mx*)^2+(x2 - mx*)^2+…+(xn - mx*)^2).4.Найдитеlд.5.Запишите доверительный интервал (mx*-lд, mx*+lд)


CompleteRepair.Ru