Главная Войти О сайте












Как считать определитель в матрице

Определитель (детерминант) матрицы - одно из важнейших понятий линейной алгебры. Определитель матрицы представляет из себя многочлен от элементов квадратной матрицы. Для нахождения определителя существует общее правило для квадратных матриц любого порядка, а также упрощенные правила для частных случаев квадратных матриц первого, второго и третьего порядков.Как считать определитель в матрицеВам понадобится

Пусть квадратная матрица имеет первый порядок, то есть состоит одного единственно элемента a11. Тогда определителем такой матрицы будет сам элемент a11.

Теперь пусть квадратная матрица имеет второй порядок, то есть представляет из себя матрицу 2x2. a11, a12 - элементы первой строки этой матрицы, а a21 и a22 - элементы второй строки.
Определитель такой матрицы можно найти по правилу, которое можно назвать «крест-накрест». Определитель матрицы A равен |А| = a11*a22-a12*a21.

В квадратной порядка можно воспользоваться «правилом треугольника». Это правило предлагает простую для запоминания «геометрическую» схему вычисления определителя такой матрицы. Само правило изображено на рисунке. В результате |А| = a11*a22*a33+a12*a23*a31+a13*a21*a32-a11*a23*a32-a12*a21*a33-a13*a22*a31.Как считать определитель в матрице

В общем случае для квадратной матрицы n-го порядка определитель задается по рекурсивной формуле:
M с индексами является дополнительным минором этой матрицы. Минор квадратной матрицы порядка n M с индексами от i1 до ik вверху и индексами от j1 до jk внизу, где k<=n, - это определитель матрицы, который получается из исходной вычеркиваниемi1...ik строк и j1...jk столбцов.Как считать определитель в матрице


CompleteRepair.Ru