Эврика!

Регистрация

Как вычислить определитель 4 порядка

Определитель (детерминант) матрицы - одно из важнейших понятий линейной алгебры. Определитель матрицы представляет собой многочлен от элементов квадратной матрицы. Чтобы вычислить определитель четвертого порядка, нужно пользоваться общим правилом вычисления определителя.
Как вычислить определитель 4 порядкаВам понадобится

Квадратная матрица четвертого порядка представляет из себя таблицу чисел из четырех строк и четырех столбцов. Ее определитель считается по общей рекурсивной формуле, приведенной на рисунке. M с индексами является дополнительным минором этой матрицы. Минор квадратной матрицы порядка n M с индексом 1 вверху и индексами от 1 до n внизу, - это определитель матрицы, который получается из исходной вычеркиванием первой строки и j1...jn столбцов (j1...j4 столбцов в случае квадратной матрицы четвертого порядка).Как вычислить определитель 4 порядка

Из этой формулы следует, что в результате выражение для определителя квадратной матрицы четвертого порядка представит из себя сумму из четырех слагаемых. Каждое слагаемой будет являться произведением ((-1)^(1+j))aij, то есть одного из членов перовой строки матрицы, взятого с положительным или отрицательным знаком, на квадратную матрицу третьего порядка (минор квадратной матрицы).

Получившиеся миноры, которые представляют из себя квадратные матрицы третьего порядка, можно уже считать по известной частной формуле, без использования новых миноров. Определители квадратной матрицы третьего порядка можно рассчитать по так называемому «правилу треугольника». Формулу для расчета определителя в этом случае выводить не нужно, а можно запомнить ее геометрическую схему. Эта схема изображена на приведенном рисунке. В результате |А| = a11*a22*a33+a12*a23*a31+a13*a21*a32-a11*a23*a32-a12*a21*a33-a13*a22*a31.
Следовательно, миноры вычислены и определитель квадратной матрицы четвертого порядка может быть посчитан.Как вычислить определитель 4 порядка

© CompleteRepair.Ru