Эврика!

Как найти сторону правильного многоугольника

Содержание

  1. Инструкция

Как найти сторону правильного многоугольника

Фигура, образованная более чем из двух линий, замыкающихся между собой, называется многоугольником. Каждый многоугольник имеет вершины и стороны. Любой из них может быть правильным или неправильным.

Инструкция

  • Правильным многоугольником называется фигура, у которой все стороны равны. Так, например, равносторонний треугольник представляет собой правильный многоугольник, состоящий из трех замкнутых линий. В данном случае, все его углы равны 60 °. Его стороны между собой равны, но не параллельны друг другу. Таким же свойством обладают и другие многоугольники, однако, углы у них имеют другие величины. Единственный из правильных многоугольников, у которого стороны не только равны, но и попарно параллельны - квадрат.Если в задаче дан равносторонний треугольник с площадью S, то его неизвестную сторону можно найти через углы и стороны. Прежде всего, найдите высоту треугольника h, перпендикулярную к его основанию:h=a*sinα=a√3/2, где α=60° - один из углов, прилежащих к основанию треугольника.Руководствуясь этими соображениями, преобразуйте формулу для нахождения площади таким образом, чтобы по ней можно было вычислить длину стороны:S=1/2a*a√3/2=a^2*√3/4Отсюда следует, что сторона a равна:a=2√S/√√3
  • Сторону правильного четырехугольника найдите, пользуясь несколько иным способом. Если он представляет собой квадрат, в качестве первоначальных данных используйте его площадь или диагональ:S=a^2Следовательно, сторона a равна:a=√SКроме того, если дана диагональ, то сторону можно вычислить и по другой формуле:a=d/√2
  • В большинстве случаев сторону правильного многоугольника можно определить, зная радиус вписанной в него или описанной вокруг него окружности. Известно, что имеется взаимосвязь между стороной треугольника и радиусом окружности, описанной вокруг этой фигуры:a3=R√3, где R - радиус описанной окружностиЕсли окружность вписана в треугольник, то формула приобретает другой вид:a3=2r√3, где r - радиус вписанной окружностиУ правильного шестиугольника формула для нахождения стороны при известном радиусе описанной (R) или вписанной (r) окружностей выглядит следующим образом:a6=R=2r√3/3Из этих примеров можно сделать вывод, что для всякого произвольного n-угольника формула для нахождения стороны в общем виде выглядит следующим образом:a=2Rsin(α/2)=2rtg(α/2)

Как переменный ток сделать постоянным
Как переменный ток сделать постоянным
Как находить интеграл
Как находить интеграл
Как писать научный доклад
Как писать научный доклад
С какими элементами взаимодействует углерод
С какими элементами взаимодействует углерод
Происхождение слова ок (okay)
Происхождение слова ок (okay)
Как найти промежутки возрастания функций
Как найти промежутки возрастания функций

© CompleteRepair.Ru