Главная Войти О сайте












Как найти длину основания трапеции

Для задания такого четырехугольника, как трапеция, должно быть определено не менее трех его сторон. Поэтому, для примера, можно рассмотреть задачу, в условии которой заданы длины диагоналей трапеции, а также один из векторов боковой стороны.Как найти длину основания трапеции

Фигура из условия задачи представлена на рисунке 1.В данном случае следует предположить, что рассматриваемая трапеция – это четырехугольник AВCD, в котором заданы длины диагоналей AC и BD, а также боковая сторона АВ, представленнаявектором a(ax,ay).Принятые исходные данные позволяют найти оба основания трапеции (как верхнее, так и нижнее). В конкретном примере сначала будет найдено нижнее основаниеАD.

Рассмотрите треугольник ABD. Длина его стороны АВ равна модулю вектора a. Пусть|a|=sqrt((ax)^2+(ay)^2)=a, тогда cosф =ax/sqrt(((ax)^2+(ay)^2), как направляющий косинус a. Пусть заданная диагональ BD имеет длину p, а искомая AD длину х. Тогда, по теореме косинусов, P^2=a^2+ x^2-2axcosф. Или x^2-2axcosф+(a^2-p^2)=0.

Решения этого квадратного уравнения:X1=(2acosф+sqrt(4(a^2)((cosф)^2)-4(a^2-p^2)))/2=acosф+sqrt((a^2)((cosф)^2)-(a^2-p^2))==a*ax|sqrt(((ax)^2+(ay)^2)+sqrt((((a)^2)(ax^2))/(ax^2+ay^2))-a^2+ p^2)=AD.

Для нахождения верхнего основанияВС (его длина при поиске решения также обозначена х) используется модуль |a|=a, а также вторая диагональ BD=qи косинус угла АВС, который, очевидно,равен (п-ф).

Далее рассматривается треугольник АВС, к которому, как и ранее, применяется теорема косинусов, и возникает следующее решение. Учитывая, что cos(п-ф)=-cosф, на основе решения для AD, можно записать следующую формулу, заменив p на q:ВС=- a*ax|sqrt(((ax)^2+(ay)^2)+sqrt((((a)^2)(ax^2))/(ax^2+ay^2))-a^2+q^2).

Данное уравнение является квадратным и, соответственно, имеет два корня. Таким образом, в данном случае остается выбрать лишь те корни, которые имеют положительное значение, так как длина не может быть отрицательной.

ПримерПусть в трапеции АВСD боковая сторона АВ задана вектором a(1, sqrt3), p=4, q=6. Найти основания трапеции.Решение. Используя полученные выше алгоритмы можно записать:|a|=a=2, cosф=1/2. AD=1/2+sqrt(4/4 -4+16)=1/2 +sqrt(13)=(sqrt(13)+1)/2.BC=-1/2+sqrt(-3+36)=(sqrt(33)-1)/2.


CompleteRepair.Ru