Главная Войти О сайте












Как найти площадь прямоугольника

Прямоугольник относится к простейшим плоским геометрическим фигурам и является одним из частных случаев параллелограмма. Отличительная черта такого параллелограмма - прямые углы во всех четырех вершинах. Ограниченную сторонами прямоугольника площадь можно вычислить несколькими способами, используя размеры его сторон, диагонали и углы между ними, радиус вписанной окружности и т.д.Как найти площадь прямоугольника

Если известны длины сторон (Н и W), то просто перемножьте его высоту на ширину и результатом будет искомая : S=Н*W.

Если известна величина угла (α), который составляет диагональ прямоугольника с одной из его сторон, а также длина (С) этой диагонали, то для вычисления площади можно задействовать определения тригонометрических функций в прямоугольном треугольнике. Прямоугольный треугольник здесь образуют две стороны четырехугольника и его диагональ. Из определения косинуса вытекает, что длина одной из сторон будет равна произведению длины диагонали на косинус угла, величина которого известна. Из определения синуса можно вывести формулу длины другой стороны - она равна произведению длины диагонали на синус все того же угла. Подставьте эти тождества в формулу из предыдущего шага, и получится, что для нахождения площади надо перемножить синус и косинус известного угла, а также квадрат длины диагонали прямоугольника: S=sin(α)*cos(α)*С².

Если кроме длины диагонали (С) прямоугольника известна величина угла (β), который образуют диагонали, то для вычисления площади фигуры можно тоже задействовать одну из тригонометрических функций - синус. Возведите в квадрат длинудиагонали и умножьте полученный результат на половину синуса известного угла: S=С²*sin(β)/2.

Если известен радиус (r) вписанной в прямоугольник окружности, то для вычисления площади возведите эту величину во вторую степень и увеличьте результат в четыре раза: S=4*r². Четырехугольник, в который можно вписать окружность, будет являться квадратом, а длина его стороны равна диаметру вписанной окружности, то есть удвоенному радиусу. Формула получена подстановкой длин сторон, выраженных через радиус в тождество из первого шага.

Если известны длины периметра (P) и одной из сторон (A) прямоугольника, то для нахождения площади внутри этого периметра вычислите половину произведения длины стороны на разницу между длиной периметра и двумя длинами этой стороны: S=A*(P-2*A)/2.


CompleteRepair.Ru