Главная Войти О сайте

Как найти середину вектора

Как найти середину вектора

Содержание:
  1. Определение координат середины вектора
  2. Инструкция для определения координат середины вектора
  3. Пример
  4. Найдем модуль вектора AB: |AB| = √(4 + 4 + 4) = 2 * √3.
  5. Проверка правильности координат середины вектора
  6. Следовательно, координаты середины вектора были найдены верно.
  7. Полезный совет

Определение координат середины вектора

Вектор – это величина, характеризуемая своим численным значением и направлением. Другими словами, вектор – это направленный отрезок. Положение вектора AB в пространстве задается координатами точки начала вектора A и точки конца вектора B.

Инструкция для определения координат середины вектора

Для начала определимся с обозначениями начала и конца вектора. Если вектор записан как AB, то точка A является началом вектора, а точка B – концом. И наоборот, для вектора BA точка B является началом вектора, а точка A – концом.

Пусть нам задан вектор AB с координатами начала вектора A = (a1, a2, a3) и конца вектора B = (b1, b2, b3). Тогда координаты вектора AB будут следующими: AB = (b1 – a1, b2 – a2, b3 – a3), т.е. из координаты конца вектора необходимо вычесть соответствующую координату начала вектора.

Длина вектора AB (или его модуль) вычисляется как корень квадратный из суммы квадратов его координат: |AB| = √((b1 – a1)^2 + (b2 – a2)^2 + (b3 – a3)^2).

Пример

Рассмотрим пример. Пусть дан вектор AB с координатами начала вектора A = (1, 3, 5) и конца вектора B = (3, 5, 7). Тогда координаты вектора AB можно записать как AB = (3 – 1, 5 – 3, 7 – 5) = (2, 2, 2).

Найдем модуль вектора AB: |AB| = √(4 + 4 + 4) = 2 * √3.

Значение длины заданного вектора поможет нам для дальнейшей проверки правильности координат середины вектора.

Далее найдем координаты точки O: O = ((1 + 3)/2, (3 + 5)/2, (5 + 7)/2) = (2, 4, 6).

Тогда координаты вектора AO рассчитываем как AO = (2 – 1, 4 – 3, 6 – 5) = (1, 1, 1).

Проверка правильности координат середины вектора

Выполним проверку. Длина вектора AO = √(1 + 1 + 1) = √3. Вспомним, что длина исходного вектора равна 2 * √3, т.е. половина вектора действительно равна половине длины исходного вектора.

Теперь рассчитаем координаты вектора OB: OB = (3 – 2, 5 – 4, 7 – 6) = (1, 1, 1).

Найдем сумму векторов AO и OB: AO + OB = (1 + 1, 1 + 1, 1 + 1) = (2, 2, 2) = AB.

Следовательно, координаты середины вектора были найдены верно.

Полезный совет

Выполнив вычисления координат середины вектора, обязательно выполните хотя бы самую простую проверку – посчитайте длину вектора и сравните ее с длиной данного вектора.


CompleteRepair.Ru