Главная Войти О сайте












Как найти перпендикулярный вектор

Перпендикулярными называются вектора, угол между которыми составляет 90º. Перпендикулярные вектора строятся при помощи чертежных инструментов. Если известны их координаты, то проверить или найти перпендикулярность векторов можно аналитическими методами.Как найти перпендикулярный векторВам понадобится

Постройте вектор перпендикулярный данному. Для этого в точке, которая является началом вектора, восстановите к нему перпендикуляр. Это можно сделать при помощи транспортира, отложив угол 90º. Если транспортира нет, сделайте это циркулем.

Установите его в точку начала вектора. Проведите окружность произвольным радиусом. Затем постройте две окружности с центрами в точках, где первая окружность пересекла прямую, на которой лежит вектор. Радиусы этих окружностей должны быть равны между собой и больше радиуса первой построенной окружности. На точках пересечения окружностей постройте прямую, которая будет перпендикулярна исходному вектору в точке его начала, и отложите на ней вектор, перпендикулярный данному.

Определите перпендикулярность двух произвольных векторов. Для этого с помощью параллельного переноса постройте их так, чтобы они исходили из одной точки. Измерьте угол между ними, при помощи транспортира. Если он равен 90º, то вектора перпендикулярны.

Найдите вектор, перпендикулярный тому, координаты которого известны и равны (x;y). Для этого найдите такую пару чисел (x1;y1), которая удовлетворяла бы равенству x•x1+y•y1=0. В этом случае вектор с координатами (x1;y1) будет перпендикулярен вектору с координатами (x;y).

ПримерНайдите вектор, перпендикулярный вектору с координатами (3;4). Используйте свойство перпендикулярных векторов. Подставив в него координаты вектора, получите выражение 3•x1+4•y1=0. Подберите пары чисел, которые делают это тождество верным. Например, пара чисел x1=-4; y1=3 делает тождество верным. Значит, вектор с координатами (-4;3) будет перпендикулярен данному. Таких пар чисел можно подобрать бесконечное множество, а потому и векторов тоже бесконечно много.

Проверяйте перпендикулярность векторов при помощи тождества x•x1+y•y1=0, где (x;y) и (x1;y1) координаты двух векторов. Например, вектора с координатами (3;1) и (-3;9) перпендикулярны, так как 3•(-3)+1•9=0.


CompleteRepair.Ru