Главная Войти О сайте












Как возвести корень в степень

Для быстрого решения примеров надо знать свойства корней и действия, которые можно с ними выполнять. Одна из промежуточных задач — возведение корня в степень. В результате пример преобразовывается в более простой, доступный для элементарных вычислений.Как возвести корень в степень

Задайте подкоренное число a>=0, из которого извлекают корень. Пусть для примера a=8. Также его называют числом, стоящим под знаком корня.

Запишите целое число n1. Его называют показателем корня. Если n=2, речь идет о квадратном корне из числа a. Если n=3, корень называют кубическим. Для примера можно взять n=6.

Выберите целое число k — степень, в которую надо возвести корень. Пусть k=2.

Сформулируйте получившийся для решения пример. В данном случае надо возвести в квадрат корень шестой степени из числа восемь.

Для решения задачи возведите в степень подкоренное число: 8²=64.

Сформулируйте получившуюся задачу: теперь надо извлечь корень шестой степени из числа 64.

Преобразуйте подкоренное выражение: 64=8*8, т.е. надо извлечь корень шестой степени из произведения двух сомножителей. Иначе можно записать так: корень шестой степени из числа восемь умножить на корень шестой степени из числа восемь. Еще один вариант записи: корень шестой степени из числа восемь в квадрате.

Преобразуйте еще одно использующееся в примере число: 6=3*2. Теперь квадрат — число два — есть и в подкоренном выражении, и в показателе степени. Поэтому их можно взаимно сократить, тогда пример прозвучит так: корень третьей степени из числа восемь. Кубический корень из восьми равен двум — это ответ.

Чтобы возвести корень в степень другим способом, после четвертого шага сразу преобразуйте n=6=3*2. Число два есть и в степени, и в показателе корня, поэтому на двойку можно сократить.

Запишите преобразованную задачу: найти корень третьей степени из числа восемь. С подкоренным выражением не пришлось ничего делать, потому что пример сразу упростился. Ответ задачи — два — кубический корень из восьмерки.


CompleteRepair.Ru