
Постройте прямоугольник EFGH. Запишите известные данные: диагональ EG и угол α, полученный от пересечения двух равных диагоналей FH и EG. Постройте на рисунке диагонали и отметьте между ними угол α.

Буквой А отметьте точку пересечения диагоналей. Рассмотрите образованный построениями треугольник EFА. Согласно свойству прямоугольника его диагонали равны и делятся пополам точкой пересечения А. Вычислите значения FА и EА. Так как треугольник EFА является равнобедренным и его стороны EА и FА равны между собой и соответственно равны половине диагонали EG.
Далее вычислите первую сторону EF прямоугольника. Данная сторона является третьей неизвестной стороной рассматриваемого треугольника EFА. Согласно теореме косинусов по соответствующей формуле найдите сторону EF. Для этого подставьте в формулу косинусов полученные ранее значения сторон FА равна EА и косинус известного угла между ними α. Вычислите и запишите полученное значение EF.

Найдите вторую сторону прямоугольника FG. Для этого рассмотрите другой треугольник EFG. Он является прямоугольным, где известны гипотенуза EG и катет EF. Согласно теореме Пифагора найдите второй катет FG по соответствующей формуле.

В соответствии со свойствами прямоугольника его противолежащие ребра равны. Таким образом сторона GH равна найденной стороне EF, а HЕ = FG. Запишите в ответ все вычисленные стороны прямоугольника.